黑鯛之繁養殖

黄福銘、周昱翰、劉富光

一、前言

黑鯛(Acanthopagrus schlegeli)為臺灣重要養殖經濟魚種,亦為雲嘉沿海地區的主要養殖魚種,俗名烏格仔或沙格仔。早期人工繁殖成功以前,養殖所需的魚苗均由沿岸或港灣所捕獲的海苗供應,但因數量相當有限,且易受天侯及人為因素的影響,所以養殖面積的拓展受到相當的限制。

由於黑鯛繁殖技術的確立,魚苗來源已趨穩定,目前多以飼養人工繁殖的魚苗為主,因此相對提高了漁民的養殖意願,並且因為黑鯛對環境之適應能力強,比較容易飼養,養成僅需一年的時間即可到達上市體型(圖1),使得養殖面積逐年擴增,產量因之也逐年增加。黑鯛全年皆可生產,但以秋季至翌年春季為旺季。由於肉質細膩,味道鮮美,不論是炭烤、鹽燒、清蒸或煮湯,都是家庭廚房或餐館內常見的佳餚,而普遍受到消費大眾之喜愛,自然在市場上佔有一席之地,其養殖之重要性便可不言而喻。

圖 1.黑鯛 (Acanthopagrus schlegeli)

二、形態與分佈

黑鯛屬鯛科(Sparidae),體側扁,背緣彎曲,腹緣較平。背 鰭單一,硬棘強大,與軟條間刻缺不明顯。側線上方至背鰭棘中 央部位有鱗片 6 至 7 枚,側線起點有一不規則黑斑,體側並有若 干黑色縱帶。分布於日本、韓國、台灣及中國大陸沿海一帶,本 省東部、北部、西部及離島之澎湖海域均有記錄,其魚苗大多出 現在沿岸的港灣和河口交匯處。

三、生態習性

黑鯛屬雜食性,具適應力強及成長快等生物特性,所以適合 人工養殖。茲對鹽度、溫度、食性、攝餌習性及性轉變等特性,分述 如下:

(一)對鹽度之適性

黑鯛屬於廣鹽性魚類,每年五至六月間,在本省河口水 域均可發現成群之黑鯛仔稚魚苗聚集,在淡水鹹水均可養殖, 且在淡水中生長較鹹水者快速,又因其存活率高,亦能忍受鹽 度的劇烈變化,故其對環境之適應力佳。

(二)對溫度之適性

黑鯛亦屬廣溫性魚類,在水溫 5-35 ℃均可成長,但以 23-28 ℃為最適溫度,水溫在 10 ℃以下即不攝食,6 ℃時則 行動遲緩,致死溫度為 3.4 ℃。臺灣因地處亞熱帶,相當適合養殖,冬季不必越冬設施也不會凍死,夏季則需準備水車以增加溶氧並防止悶熱致死。

(三)食性

黑鯛屬於沿岸底棲雜食性魚類,除吃食魚類外,也攝食 底棲性之甲殼類、貝類、多毛類及藻類,但較偏肉食性。

(四)攝餌習性

黑鯛對於外界環境之警戒心頗強,攝餌時常因池邊的陰影而驚嚇逃竄。通常會成群浮上搶食飼料,結果越強悍或大型魚

則吃得多,成長也較快,而攝取不到餌料之瘦弱小型魚則成長 緩慢,故在魚苗養成過程中須進行多次篩選分養,以促進魚類 的成長。

(五) 性轉變特徵

黑鯛為雌雄同體雄性先熟型的典型性轉變魚類,養成一年体重達 400-550 公克的成魚,其精巢已發育成熟,養成二年體重達 600-750 公克的黑鯛,已有少數性轉變成雌魚,養成三年體重達 800-950 公克(體長通常在 25-35 公分以上)的黑鯛則有 50 %性轉變的雌魚,且隨著魚齡的增加,雌魚的比例愈高。

四、人工繁殖

(一)種魚培育

一般繁殖業者在繁殖季節期間,直接購買池塘養成之二至四年的黑鯛作為種魚,並在海水中蓄養三至七天後,再注射促性腺激素催熟產卵。據過去之研究指出,種魚飼料的營養優劣,會影響繁殖期間種魚的產卵量、卵徑、卵質及孵化率,而卵質之優劣與初期仔稚魚育成之活存率有關。水試所台西分所曾研究黑鯛之種魚飼料,發現當飼料添加 n-3 高度不飽和脂肪酸的飼料所生產的受精卵,在產卵量、浮性卵率和孵化率上明顯優於未添加者(表1)。

由表得知,當飼料含有 1.079% n-3 高度不飽和脂肪酸的就可達到提昇卵質的效果,而以 No.4 (不含 n-3 高度不飽和脂肪酸)為最差,可見高度不飽和脂肪酸對卵質好壞影響很大。但如超過 1.079%,即使再增加 n-3 高度不飽和脂肪酸的含量也無法進一步改善卵質 (No.3)。因此,在繁殖時期之前三個月,於飼料中增加蛋白質、高度不飽和脂肪酸 (HUFA)、維生素及維生素 E 等的含量,對於種魚之培育而言,除能促

進其性腺發育及提高卵質外,另可因此提高種苗生產效益。

表 1.種魚飼料對黑鯛產卵量和卵質之影響

	No.1	No.2	No.3	No.4
總產卵量 (x 10 ⁴)	72.90	265.41	151.24	52.18
浮性卵比率(%)	67.41	72.70	60.81	54.72
卵徑(公厘)	0.87 ± 0.03	0.885 ± 0.04	0.855 ± 0.04	0.87 ± 0.09
油球數(個/卵)	1.01 ± 0.02	1.08 ± 0.34	1.09 ± 0.19	1.00 ± 0.01
畸形率 (%)	8.33 ± 7.39	9.12 ± 6.45	9.46 ± 7.90	13.10 ± 9.70
孵化率 (%)	92.08 ± 7.9	94.0 ± 6.5	92.35 ± 7.6	83.60 ± 22.7

資料來源:台灣省水產試驗所七十九年度試驗研究工作報告

No.1: 飼料含 0.545 %之 n-3 高度不飽和脂肪酸

No.2: 飼料含 1.079 %之 n-3 高度不飽和脂肪酸

No.3: 飼料含 2.146 %之 n-3 高度不飽和脂肪酸

No.4: 飼料含 0.036 %之 n-3 高度不飽和脂肪酸

魚類生長所需營養中以蛋白質最為重要,蛋白質為構成魚體組織、酵素及某些激素等之必須物質,也是維持生命所必須之營養素,本分所也曾探討不同蛋白質含量之人工飼料對黑鯛種魚卵質之影響,發現黑鯛若以低蛋白質含量(35%)之飼料投餵,會造成產卵量減少和孵化率下降之情形,但低蛋白質飼料對黑鯛受精卵之浮卵率則沒有影響(表 2)。

表 2.不同蛋白質含量對黑鯛產卵量及卵質之影響

組別	每公斤魚重 產卵量 (× 10 ⁴)	浮卵率 (%)	孵化率 (%)	卵徑 (公厘)	油球數 (個)	油球徑 (公厘)
No.1	71.4	662 ± 14.6	87.5 ± 10.2	0.86 ± 0.02	1	0.205 ± 0.01
No.2	107.1	66.7 ± 13.7	962 ± 62	0.85 ± 0.01	1	0.201 ± 0.03

資料來源:台灣省水產試驗所八十年度試驗研究工作報告

No.1:含35%蛋白質 No.2:含45%蛋白質

(二)催熟、產卵與孵化

1.繁殖季節及種魚選別

黑鯛屬多次產卵型的魚類,其產卵期在十一月至翌年三月, 而真正高峰期在一至三月。目前多採用種魚以激素注射人工催熟 後,再放入池中自然產卵的方式進行繁殖。在繁殖期間,雌魚挑 選腹部膨大、生殖孔紅腫或是抽卵鏡檢卵徑大於 450 微米者,雄 魚挑選輕壓腹部即流出精液者(圖2)。



圖 2.以抽卵管採卵檢查母魚 成熟情形

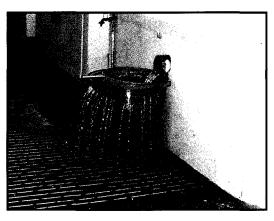


圖 3.架設浮游生物網收集受精卵

2.人工催熟

由於黑鯛為雌雄同體,其性成熟過程有明顯之性轉變,一年生大都為雄魚,因此雌種魚需養殖三年以上,雄種魚為二年以上者。

將挑選之種魚,以雌雄 2:1 或 3:1 之比率移入室內產卵池中, 蓄養三至七天逐漸調整鹽度 (28-35 ppt)後,施以激素催熟,採背部 或腹腔注射。選用激素的種類有:鯉魚腦下垂体 (CP)、人類絨毛促 性腺激素 (HCG)、性釋素類似物 (LHRH-a)、好滿 (Ovaprim)等, 均可促使黑鯛種魚生殖腺成熟而在池中自然產卵。

3.受精卵之收集與孵化

因黑鯛的受精卵屬浮性卵,會浮在鹽度 28-35 ppt 之海水中。通常在產卵池之溢水口外,架設六十目的浮游生物網,收集隨流水溢出之受精卵(圖 3)。正常受精卵略帶黃色而透明,屬浮性;壞卵呈白

濁狀,屬沈性,故可將之輕易分離(圖 4)。魚苗的孵化率隨著種魚之營養狀態及催熟激素而有不同,一般在 70-90 %之間。當水溫 25 ℃,受精卵約經過三十五小時孵化,剛孵出的魚苗(俗稱魚花),體腔內尚帶有卵黃囊,肚皮朝上,呈倒吊狀,魚苗体長 2.0-2.2 公厘,口尚未形成。

圖 4.收集浮在水面之受精卵

圖 5.間捕情形

(三) 幼苗培育

孵化後第三天卵黃囊消失,此時口部已形成,即可開始攝食(俗稱開口),此時魚苗已可自行游動,身體並出現黑色素,此期俗稱「黑身」魚苗,開始投餵牡蠣受精卵及其幼生,直到孵化後六至七天為止,並在第五天時併投以綠藻和輪蟲,至魚苗會潛入池底(俗稱「沉底」),約需二十日左右,沉底的魚苗又稱「白身仔」體長約 1.5 公分,於第十八天起除繼續投給輪蟲外,另加投豐年蝦無節幼蟲(Nauplius),第二十五天起需改投橈腳類(Copepoda)並且開始以人工配合飼料馴餌。

以往人工繁殖之海水魚苗常有大量死亡的情形發生,尤以黑 鯛苗為甚。探究其原因,除了繁殖技術及餌料生物的影響外,在稚 魚階段無法提供良質且營養均衡的飼料,亦可能是導致繁殖的後半 階段畸形及大量死亡的原因,對淡水魚類如鯉魚稚魚而言,當以魚 粉為主體的飼料來飼育,容易出現頭部變形的魚苗,主要原因乃是 缺磷所致,同樣情形海水魚類亦可能發生。本分所也曾探討不同磷含量之人工飼料對黑鯛稚魚之影響,由表 3 可知,當以酪蛋白及卵蛋白為蛋白源之飼料,其飼料效率隨磷含量增加而增加,以含有 0.6%的磷飼料組之增重率 80.99%及飼料效率 87.39%最高,而超 過 0.6%以上時,又隨磷含量增加反而使增重率及飼料效率下降,但磷含量 0.9%以上的增重率及飼料效率又比 0.4%磷含量之飼料效率為佳。因此,如為降低稚魚的畸形率及死亡率,提高種苗生產 後幼苗的健康,黑鯛稚魚飼料的磷含量應在 0.6%左右。

表 3. 飼料中不同磷含量對黑鯛稚魚之影響

磷含量	初重	末重	飼料效率	增重率	活存率
(%)	(公克)	(公克)	(%)	(%)	(%)
0.2	9.05 ± 1.75	12.94 ± 2.04	57.67	42.98	62.5
0.3	9.15 ± 1.95	12.90 ± 2.27	55.48	40.98	62.5
0.4	8.97 ± 1.69	12.74 ± 2.13	57.61	42.03	75.0
0.5	9.45 ± 1.82	15.03 ± 3.67	67.46	59.05	87.5
0.6	9.26 ± 1.76	16.76 ± 3.52	87.39	80.99	100
0.7	8.75 ± 1.89	14.79 ± 2.95	73.74	69.03	100
0.8	10.07 ± 2.12	16.92 ± 3.15	71.32	68.02	87.5
0.9	9.74 ± 1.86	14.90 ± 2.91	66.51	52.98	100
1.0	10.08 ± 1.96	15.72 ± 3.11	66.49	55.95	87.5

資料來源:台灣省水產試驗所八十一年度試驗研究工作報告

五、養殖

黑鯛養殖方法可分為一般魚塭養殖、箱網養殖及利用潮間帶養殖三種,而以集約式魚塭養殖為主。養殖用之魚苗大多來自人工繁殖業者培育之一寸至二寸的魚苗,放養數量為每公頃20000-50000尾不等,養殖一年後可達十台兩至一台斤,因此必須做好放養前的準備,並考慮魚池設備、飼料的營養和投餵方法、

池塘管理及病害處理的能力,才能增加養殖收益。

(一) 魚塭的設施

1. 魚池

一般養殖池形狀,依養殖生物及地形而稍有不同,沒有一定的標準型式,一般以長方形為多。在砌建時必須注意單獨注水與排水,且池底須向排水口呈傾斜(坡度至少必須大於5/1000),以利池水之排出。池塘大小以3-5分至1甲池最常見,水深在1.5-2.0公尺較適宜。由於養殖期間長達2年,除部分已達上市體型(一尾/斤)者間捕出售外(圖5),在養殖後期常因底質老化產生有毒的還原物質(如氨、硫化氫等),降低魚類成長甚至造成死亡,所以,在間捕出售後最好能移池再繼續養殖。

2. 水車

溶氧量是養魚池水質最重要之限制因子,水中溶氧量除靠空氣的擴散作用外,尚需依賴部分設施(如水車),以增加空氣與水面接觸面積來提高溶氧量。一般平均生產 7500 台斤的魚需要水車一台(1-1.5 馬力),黑鯛對溶氧量的要求不高,但一定要有水車,日間只需開一台水車打水,夜間則全開,以免池魚缺氧。水車打水方向必須盡可能讓池水形成環流,使殘餌及池魚的排泄物集中,以利清除。

(二) 放養前的準備

養殖魚類之生存及成長,與溫度、鹽度、光度、餌料、溶 氧、密度、池底清潔等因素有關,因此在養殖開始時就應建立 適當環境:

1. 整池

池塘的整備工作,包括清除污泥、消毒、曝晒、病魚的處理及池魚搬移 (換池) 等,作好池塘的整理工作,才能達到養殖順利及維持養殖魚健康的目的。整池的工作,主要包括清除污

泥→消毒→曝晒1-2星期→底泥翻耕→再曝晒並任其風乾氧化,可以有效地殺滅病原體(如寄生蟲、蟲卵及細菌等)達到完全消毒的目的,且養殖池經過長時間的使用,易造成有機物大量堆積,且池底因厭氧菌大量增殖而嚴重老化,所以必須重新創造優良的養殖環境。整理池塘以越冬前及入春後池魚搬移前等兩個時機最適宜(圖6,圖7)。

圖6.魚塭整池情形(一)

圖7.魚塭整池情形 (二)

(1) 清除污泥

清除池塘底部之污泥,除可增加土壤與空氣的接觸面積外,並能加速分解殘存的有機物質而產生各種營養鹽,以提供藻類利用,當池塘注入新水後,使藻類能夠快速增殖,達到作水培養餌料生物的目的,進而創造優良的養殖環境。

(2) 消毒

消毒的目的在於殺死有害的病原體如寄生蟲、寄生蟲卵、黴菌、黴菌孢子及細菌等,能適當有效而完全的消毒,除不會產生藥物殘留等問題外,對養殖物亦不會有其他傷害。一般的方法有:清除污泥後,可用漂白水 (100 ppm) 或漂白粉 (每分地 20 公斤) 或生石灰消毒池塘 (每分地 60-70 公斤)。使用生石灰時,水量剛好能淹沒池底,才能有效地發揮消毒作用。

(3) 曝晒

池塘經過清除污泥、消毒之後,還必須曝晒,池塘曝晒的時間最好在 3-4 星期之間,至少也須要 1-2 星期,才能達到消毒、殺菌、氧化與作水的效果。

2. 作水

養魚首重養水,魚類之生存及成長與水域能否保持舒適環境有密切關係。所謂舒適的環境,就是水中含氧量豐富、水溫適宜、水中餌料生物多及沒有敵害。如欲營造這種環境,除部分需依賴設備外,其餘端賴謹慎的養殖管理,適時採取必要的處理措施。因此,在養殖開始時就應建立適當環境,其中最主要的步驟就是「施肥」,施肥可分為施基肥和追肥。施基肥是為了改良底泥的營養狀況,使成為儲藏營養物質之倉庫,長久供應魚類天然餌料增殖之所需。施基肥的工作,可和池塘清整工作同時進行。追肥是為了連續補充池中營養物質,使天然餌料能夠生生不息。施肥的要領是基肥要一次施足,追肥則應少量多次。

(三) 飼料的投餵

仔稚魚期之飼料以選用鰻粉製成練餌投飼效果較佳,市售人工粒狀飼料效果並不好。幼魚期以後之飼料,則須慎選適宜之市售人工飼料。投餵量為池魚總重的 3-5 %,視池魚的攝餌及天候狀況而增減,如在水溫 25 ℃以上時投餵量為體重之 2.5%,20-25 ℃為 2 %,17-19 ℃為 1.5 %,17 ℃以下時則為 1 %左右。餵食次數在高水溫時期每日可分二至三次,一般在清晨與黃昏各一次,低水溫時期應酌量減少,每日投飼一次即可。

(四)池塘管理

養殖池之管理應注意保持良好之水質,因水質之良好與否對於養殖魚類的成長與健康影響很大。一般餌料殘渣、魚類排泄物、其他污物等會使水質惡化,如缺乏氧氣魚類即會因缺氧

窒息而死亡,故從魚類活動情形,可以預知養殖魚類健康與否,然後採取適當的防範措施。

養殖管理工作的重要性,已如前述。因此,平時應注意下列 事項,以確保養殖收益:

- 1. 定期投放人工飼料或餌料,並隨時瞭解攝食情形。
- 2. 防止敵害入侵,可在注水時嚴加過濾處理。
- 3. 養殖密度不可過高。
- 4. 隨時監測水質狀況,以免水質惡化。
- 5. 定期消毒殺菌防止養殖池老化。
- 6. 定時巡視池塘,注意池魚活動狀況。

(五) 魚病的防治

黑鯛養殖期間常見的疾病有魚蝨、車輪蟲病、粘液孢子蟲病、白點蟲病、舌杯蟲、鐘形蟲、指環蟲(擬指環蟲)病、卵圓鞭毛蟲病和腸炎等。前八種疾病的病因係外部寄生蟲所造成(表4),可以顯微鏡鏡檢得知。後者可在飼料添加少量之抗生素或磺胺劑加以預防,對於罹病魚,則必須進一步作細菌培養才能確定。總而言之,當魚塭發現罹病魚時,應將其交由專業人員(如各縣市家畜疾病防治所之魚病檢驗人員)檢驗,才能對症下藥,趁早處理。

六、問題及未來展望

近幾年來,由於國內養殖之水產品種類日益繁多,加上國人對水產品消費習性及吃魚數量有限之影響,使得黑鯛產量過剩,在國內新市場拓展不易以及外銷市場無法順利開發下,導致魚價價格下跌,低迷不振,由120元/台斤下跌至80-100元/台斤(表5),繁養殖業者紛紛叫苦連天。因此,如何穩定魚價並調節市場供需,漁政單位應有良善的促銷及產銷等措施,以免因魚價慘跌而造成魚賤傷漁之後果。

表4.養殖黑鯛常見寄生蟲病之發生原因及處理藥劑

病原	病害發生原因	處理藥劑
魚	病原混入	有機磷劑
車輪蟲	病魚混入、水質惡化、	福馬林
	殘餌污泥、沉積、大雨	
	後等。	
粘液孢子蟲	病原混入、池塘消毒不	清池、消毒、晒池
	完全、殘餌污泥沉積、	
	養殖期間過長等。	
白點蟲	病魚混入、水質惡化、	福馬林、硫酸銅
	殘餌污泥沉積、大雨後	
	等。	
舌杯蟲	水質惡化、殘餌污泥沉	福馬林
	積、大雨後、病魚混入	
	等。	
鐘形蟲	水質惡化、殘餌污泥沉	福馬林
	積、大雨後、病魚混入	
	等。	
指環蟲	水質惡化、殘餌污泥沉	有機磷劑、
(擬指環蟲)	積、大雨後、病魚混入	Mebendazole
	等。	33331

表5.近十年來黑鯛養殖之產量、產值及平均價格變化情形

年別	產量(公噸)	產值(千元)	平均價格(元/公斤)
1990	627	108306	172.74
1991	571	120881	211.70
1992	992	201444	203.07
1993	3182	550324	172.95
1994	3506	584422	166.69
1995	7020	981846	139.86
1996	3244	311317	95.97
1997	4371	529389	121.11
1998	4045	596684	147.51
1999	2671	346454	129.71

資料來源:民國 79-88 年台灣地區漁業年報

為因應我國即將加入世界貿易組織(WTO),產業勢 必調整結構,業者除需提高養殖水產品品質,降低經營成 本,以增加經營效益外,仍需漁政單位輔導養殖專業生產區運作, 協助建立優良品牌及開拓新市場,以落實產銷班運作,進而提升 本產業競爭力,以邁向永續經營之遠景。