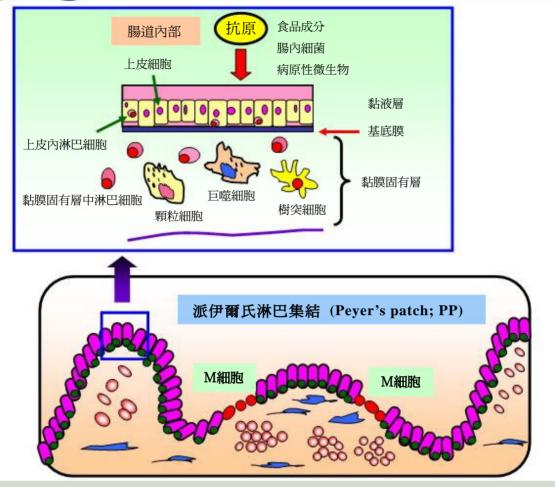


從免疫與過敏的角度談機能性食品之功能

高淑雲、吳純衡

水產試驗所水產加工組

前言


食物是維持生命的來源,而且扮演調節 身體機能的重要角色。因此,具備免疫調節 功能的機能性食品極受重視。食物吃進去 後,除了可吸收重要營養素外,同時也會曝 露在各種不同的病原性微生物和與身體構成 相異的成分下。因此,為了防範各種感染症, 體內的免疫系統能辨識外來成分,並透過排 除非自體成分,以維持身體的正常性。而身 體曝露在大量抗原性物質下的代表器官就是 消化道。人的腸道雖位於身體內部,卻有大 面積的腸道黏膜與外來物質接觸。換言之, 陽道免疫系統是體內最大的免疫關聯組織, 擔負防禦身體的重要機能。食物經口攝取 後,腸道黏膜不僅是最初接觸各種抗原的地 方,由於腸道黏膜表面原本就有大量腸內細 菌存在, 因此也刺激了腸道細菌的生成 (細 野,2006)。

腸道免疫系統的構造與特徵

腸道是將食物消化,且能選擇性吸收之 重要器官,黏膜表面對於食物成分、病原性 微生物、腸內細菌和消化酵素等各式各樣的 刺激,具有物理性與化學性的隔離機能。存 在於腸道的腸道相關淋巴組織 (Gut-

associated lymphoid tissue; GALT) 約佔身體 免疫系統的七成左右 (Erika et al., 2001)。腸 道免疫系統構造特徵如圖所示 (細野, 2006),腸道的黏膜層上覆蓋著厚厚的黏液, 黏液的下方分為上皮層、基底膜和黏膜固有 層等三層。其中上皮層由上皮細胞和上皮內 淋巴細胞等構成。另外,腸道上皮層和基底 膜下有黏膜固有層,黏膜固有層下包含血 管、淋巴管叢、神經叢。腸道表面除了有腸 道上皮細胞外,另外還有一種特化成圓頂狀 的上皮細胞稱為 M 細胞 (Membranous cell) 分布在其中。其表面不具有絨毛覆蓋,而是 呈現凹陷的形狀,使得微生物或抗原可由此 路徑通過,在M細胞底下即為派伊爾氏淋巴 集結 (Peyer's patch; PP),派伊爾氏淋巴集結 中的抗原呈現細胞 (Antigen presenting cell; APC) 可提供免疫細胞進行免疫辨識。另, 存在於黏膜固有層中之免疫細胞亦包含 B 細 胞、輔助型 T 細胞、毒殺型 T 細胞、單核球、 巨噬細胞、樹突細胞和顆粒細胞、肥大細胞 等 (Nagata et al., 2000)。腸道黏膜中的抗 體,以 IgA (Immunoglobulin A; IgA) 含量最 豐富,也是最主要的抗體型式。在黏膜中的 IgA 是經由漿細胞分泌之 J 鏈 (J chain) 將兩 個單體結合而以雙體形式存在。在腸道的黏 膜中分泌型的 IgA (Secretory IgA; S-IgA) 會 以結合的方式達到抵禦外來病原菌的角色,

腸道免疫系統的構造特徵(細野,2006)

S-IgA 為直接與病原菌結合,進而避免病原菌黏附到上皮細胞表面,因此 S-IgA 在腸道黏膜系統中扮演著免疫防禦的重要角色(Blum et al., 1999)。

腸道細菌相關之免疫反應

腸道內存在各式各樣的細菌,對於免疫反應 具有強烈的影響。因此,腸道免疫反應是由 腸道細菌刺激所產生的現象。其中之一為口 服免疫耐受性 (Oral tolerance) 與腸道細菌 有關係 (Brandtzaeg, 2002)。對於經口攝取的食物抗原,在免疫耐受性狀態下會使全身獲得食物抗原,也就是說並不會誘導食物抗原產生特殊抗體,這是「口服免疫耐受性」現象和腸道免疫系統之間獨特的特徵。若此種反應未進行,則會引起某些免疫反應,一般認為與食物過敏有關。以口服免疫耐受性與腸內細菌刺激的相關試驗作說明,利用無菌老鼠與對照組老鼠(一般飼育的老鼠),進行誘導實驗。其實驗老鼠經口攝取一段期間的蛋白抗原,並將相同蛋白抗原注入腹腔

內,測定其血中抗體值,結果顯示,無菌老 鼠的 IgG_1 和 IgE 抗體明顯上升,而對照組老 鼠其具有抗原特異性的 IgG_1 、 IgG_{2a} 、IgE 抗 體值並無顯著上升 (Sudo et al., 1997) (推測 應是腸道免疫系統中的 $CD4^+T$ 細胞被抑制 之故),因此腸道細菌的刺激對於腸道免疫系 統的調節是相當重要 (Fujioka et al., 2004)。 近年的衛生學假說 (Hygiene hypothesis),對 於感染和過敏之間的關係,曾提出關於過敏 反應和細菌感染之間有著逆相關的免疫學調 查報告,但對於過敏反應的原因,則尚未十 分明瞭。

益生菌與益生物質的免疫調節作用

益生菌 (Probiotics) 泛指「可改善宿主體內微生物菌相平衡,而有益宿主的單一或數種微生物」(Havenaar et al., 1992)。俄國科學家 Metchnikoff (1908) 觀察到保加利亞人飲食習慣後,提出經常飲用發酵乳有助於延長壽命,因為發酵乳中的乳酸菌可抑制有害菌的生長,進而延緩老化的發生。益生菌除了能延緩老化外,亦有研究指出,以發酵乳

餵食老鼠,可使腸道中 IgA 的分泌量增加,顯示可增強腸道黏膜的抵抗力 (Perdigon, 1994)。此外,讓患有過敏性皮膚炎的孕婦服用發酵乳,可降低嬰兒出生後之過敏性皮膚炎的發生率。關於益生菌的保健效果,尚有預防感染及抗腫瘤效果等。另,有報告顯示,乳酸菌及雙叉桿菌之菌體成分,可活化人體淋巴細胞且具有抗腫瘤效果,其他還有菌體多醣成分亦能活化免疫系統,截至今日仍有許多研究在進行中。目前,已被運用之益生菌的菌株如下表所示 (細野,2006),其不只應用於發酵乳,也應用於『健康食品』和家禽畜產飼料等。

益生物質 (Prebiotics) 意指「能夠選擇性促進益生菌生長之物質」。益生物質指一些食物原料,由於結構特殊,不能為人體消化道酵素分解,可通過消化道而被腸內的益生菌選擇性的發酵利用 (Gibson & Roberfroid, 1995)。據研究報告指出,木寡醣可選擇性的被腸道中雙叉桿菌發酵產生短鏈脂肪酸(Campbell et al., 1997),而降低腸道 pH 值,使腸內菌相組成產生變化,對腸內生理作用帶來很大的影響。亦有文獻指出,果寡醣可

已被運用作為益生菌的菌株(細野,2006)

乳酸桿菌屬 (Lactobacillus)	L. acidophilus, L. bulugarics, L. casei, L. gasseri, L. helveticus, L. johnsonii, L. reuteri, L. rhamnosus
球菌屬 (Streptococcus)	S. thurmophilus
腸球菌屬 (Enterococcus)	E. faecalis, E. faecium
乳酸球菌屬 (Lactococcus)	L. Lactis
雙叉桿菌屬 (Bifidobacterium)	B. bifidum, B. breve, B. infantis, B. pseudolongum, B. Longum B. thurmophilum, B. lactis

提高腸道中雙叉桿菌數量,且能降低腸道有 害菌 (Gibson et al., 1995)。此外, Iikura 與 Nagura 等人 (2002) 以對食物過敏的老鼠進 行實驗,結果顯示給予果寡醣時,糞便中的 有機酸 (如酪酸等)增加,而且能夠降低血 清中 IgE 的濃度,進而改善過敏症狀。

其他食物成分與免疫反應相關性

一、脂質

有研究顯示,以 DHA 與 EPA 添加在正常人的單核球細胞中,可明顯抑制與發炎反應相關的細胞激素之分泌 (Kweon et al., 1994)。此外,亦有研究發現,餵食 DHA 可降低小鼠血清中 IgE 的濃度,而減緩過敏發炎的症狀 (Erickson et al., 1980)。另,有文獻指出,將 DHA 用於一些會引致發炎反應的疾病治療上,如類風濕性關節炎與異位性皮膚炎等,都具有改善之效果。

二、維生素

維生素對身體而言是必需的營養素,缺乏時會對免疫系統產生很大的影響。目前,已提出和免疫有關的報告有維生素 A、B6、C、D、E、胡蘿蔔素、葉黃素及輔酶 Q10 等。據文獻指出,補充維生素 C 能提高自然殺手細胞的活性,而維生素 A 與胡蘿蔔素可增加細胞激素的分泌量(Lessard and Dupuis, 1994)。另,有研究發現補充維生素 E,可以降低 IgG₁和 IgE 抗體的生成,具有減緩過敏症狀的作用。當維生素缺乏時,除了會出現缺乏症之外,在免疫功能上亦產生失調現象;當維生素 C 缺乏時,可發現小鼠的胸腺重量及淋巴細胞明顯降低,而當維生素 A 缺

乏時,亦有淋巴細胞顯著減少的現象 (Kantha et al., 1992)。

三、礦物質(微量元素等)

礦物質和維生素相同,若缺乏時會對免疫機能產生重大影響。截至目前,已有鈣、鐵、硒、鋅、鉻等與免疫相關之報告。其中硒、鋅、鉻對於 NK 細胞活性和 T 淋巴細胞反應而言為重要營養素 (Kemahli et al., 1988),缺乏時可能會引發感染等嚴重的狀況發生,而當鐵缺乏時,則發現 T 淋巴細胞數目會降低 (Hallquist et al., 1989)。近年來,年輕女性因為過度減肥導致食物攝取量不足及高齡者因攝取量減少,造成營養不良等,這些因素導致礦物質攝取量不夠,而使得免疫機能受到影響。因此,若要維持身體免疫機能的正常化,可以額外補充機能性食品。

結語

食物富含多種營養素,為提供維持生命活動的能量來源,不僅如此,食物機能性成分對於預防各種感染和過敏反應,也佔有重要的地位。缺乏營養素時,若為代謝異常的病患,則會引發免疫機能低下,亦可能造成身體防禦機能產生嚴重缺陷。消化道對身體而言是最大的免疫系統,腸道免疫系統會直接受到食物成分和腸內細菌的影響,因此,在免疫機能的調節上頗具重要性。若攝取具有免疫調節作用的食物成分,可活化身體的免疫機能,有助於保持健康。在面臨高齡化的社會,為了增進健康,應妥善應用食物,並落實於平常的飲食習慣中,以達到調節免疫機能的作用。