利用分子標誌分析白蝦種原

利淑如、楊明樺、葉怡均、吳豐成 水產試驗所東港生技研究中心

前言

傳統育種模式主要應用引種、雜交和回 交育種等方式,將成長快或抗病佳等優良性 狀保留在育種的後代中。此方式主要依據為 表現型 (phenotype) 進行篩選,過程費時耗 力。因此,本研究利用分子輔助技術將歷年 所蒐集之白蝦種蝦自交後代個體基因分型, 以瞭解其種原間遺傳親緣關係,以加速白蝦 育種選種工作。

為了尋找成長快速與抗病基因的分子標 誌,在分子層次上,可利用個體間或種群間 具有差異的 DNA 分子標誌 (molecular marker) 作為選拔依據,並以之鑑別基因型 與判斷遺傳變異,其中又稱作微衛星體 (microsatellites) 的簡單重複序列 (simple sequence repeat, SSR) 係由真核生物基因組 中廣泛存在的 2-6 個核苷酸所組成的多次 串聯重複的 DNA 序列, 它是一種 DNA 多樣 性標記,其重複的次數在個體間具高度變異 性,此重複數量的多型性,再加上具有共顯 性 (co-dominant) 的特性,使得微衛星序列 在探討親緣關係及族群遺傳的議題上為很好 的分子標誌,也可進一步評估種原間之遺傳 歧異度及各族群遺傳多樣性。運用此方式可 在白蝦幼苗期篩選出擬育種特性之基因型,

藉以加速育種的時程與效率,並有助於後續 育種策略規劃。

材料與方法

一、動物材料

本中心自 2012 年起即著手蒐集不同來源之白蝦族群,經過多世代自交選拔及保種,共取得 10 個白蝦種原 (broodstock) (表 1),自各族群中隨機採取 10 隻白蝦作為試驗材料。

表 1 白蝦種原編號及族群代號

編號	族群代號*
S1	S101F6
S4	S104F4
S8	S108F1
C6	C106F3
C8	C108F1
K3	K103F5
K5	K105F3
K6	K106F2
K8	K108F1
VA8	V108F1

^{*}英文字母代表進口取得來源,S:美國 SIS 公司;C: 泰國;K:美國 Kona Bay 公司;V:越澳集團公司; 數字代表取得年份;Fn 為取得之種蝦自交選拔之 代數

二、動物核酸萃取

自白蝦泳足肌肉組織採取樣品約 20 mg, 浸泡於含 200 μl 酒精 (95%) 之 1.5 ml 微量離心管中,並保存於冷凍櫃 (-20℃) 中, 待組織脫水後, 再使用 GT100 Genomic DNA Mini Kit (旭基科技公司, Geneaid) 萃 取白蝦基因體 DNA,萃取步驟依序為:使用 研磨棒轉壓離心管使組織呈扁平碎狀,加入 200 μl GT buffer 至離心管中,再經研磨以均 質化樣品組織,加入 20 µl Proteinase K 至樣 本混合液中,劇烈搖晃並於60℃靜置30分 鐘,加入 200 µl GBT buffer 劇烈搖晃 5 秒, 於 60°C 下靜置至少 20 分鐘,確保混合液呈 現澄清狀態,接著加入 200 µl 100% 的酒精 至混合液中,隨即劇烈搖晃10秒混匀後,將 混合液轉至 GS column,並於 15,000 × g 離心 2 分鐘, 再將 400 μl W1 buffer 加入 GS column,於 15,000 × g 離心 30 秒後移除下清 液,將 600 µl wash buffer 加入 GS column, 於 15,000 × g 離心 30 秒移除下清液,空轉於 15,000 × g 離心 3 分鐘使其乾燥,將 GS column 移至乾淨的 1.5 ml 微量離心管,並加 入 100 μl 預熱 60℃後的 elution buffer,靜置 至少 5 分鐘,確保 elution buffer 被完全吸收, 於 15,000 × g 離心 30 秒,溶析出核酸 DNA, 並將 DNA 儲存於 -20℃中備用。

三、引子來源與聚合酶連鎖反應

根據王等 (2006) 從白蝦微衛星基因座 選取等位基因數較多的結果 TUMXLv 7.56 (F: 5'-CCATGGCTTTCCTCTTCTTC-3'; R: 5'-AGGTAGGGAAGTCGTGAGGG-3'), 其 重複序列為 10 個…(TCC)…5 (CCT)…3 (CCT)…3 (TC)…4 (TC)…4 (TC)…3 (TC)…3 (TC)...3 (CT)...來進行本試驗 10 個白蝦族群分析,各族群隨機取樣 10 隻,試 驗所需引子委託基龍米克斯生物科技股份有 限公司合成。聚合酶連鎖反應的每個樣品總 體積為 25 µl,內含模版 DNA、5X Thermo Hot Starr PCR (伯昂公司, JMR-THS5)、10 μM 引 子對及無菌蒸餾水。樣品經混合後於 GeneAmp PCR System 9700 (Applied Biosystem, USA) 進行核酸複製,其步驟依序 為:94℃反應 10 分鐘,接著開始 35 個循環: 以 94℃反應 1 分鐘、55℃反應 1 分鐘及 72 [℃]反應 1 分鐘,最後以 72[℃]反應 10 分鐘。 利用 PCR 複製個體微衛星片段,並將產物注 入內含核酸染劑 (TOOS DNA view) 的 3% Metaphor 的電泳膠體孔洞內,再倒入 TAE buffer於 SUB20 (Hoefer)電泳槽,開啟電壓 150 V 進行 5.5 小時分離微衛星片段,隨後將 膠體置入照膠系統照相後,利用影像分析軟 體 GelAnalyzer 2010a 以 20 bp Molecular Ruler (Bio-Rad) 人工比對分析微衛星條帶大 小。

四、遺傳歧異度分析

從照膠系統得到之多型性分子標誌的電泳譜帶中,選取清晰可辨的電泳條帶,計算等位基因的數目 (number of allele),以 1 和 0 記錄條帶的有或者無,在相同片段位置上存在擴增帶時,紀錄值為 1,不存在時紀錄值為 0,將圖形條帶轉換成數據資料 (表 2),並以 iMEC 程式 (https://irscope.shinyapps.io/iMEC/) (Amiryousefi et al., 2018) 計算異質結合個體期望值 (expected heterozygosity, He)、多態性資訊 含量 (polymorphism information content, PIC)、有效多重比率

(efective multiplex ratio, EMR)、平均遺傳異 質性 (mean heterozygosity, Havp)、分子標誌 指數 (marker index, MI)、鑑別力 (discriminating power, D) 與解析力

表 2 TUMXLv 7.56 基因座結果顯示的多型性之分子標誌

表 2	TU	MXL	v 7.5	6 基		吉果濕	打不自	り多型	世上之	2分寸	標誌										
编號	269	304	316	320	338	370	385	393	407	420		441 43	55 45		468	473	481	505	525	535	672
K8-1 K8-3	1	0	0	0	0	0	0	0	0	0	0) 1	0	0	0	0	0	0	0	0
K8-4	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	1	0	0	1	0	0	0
K8-5 K8-6	0	0	0	0	0	0	0	0	0	0	0	0 (0 1		0	0	0	1	0	0	0
K8-7 K8-9	0	0	0	0	0	0	0	0	0	0	0	0			0	0	1	0	1	0	0
K8-11	0	0	0	0	0	0	0	0	0	0	0	0) 1	0	1	0	0	0	0	0	0
K8-12 K8-15	0	1 0	0	0	0	0	0	0	0	0	0	0 0	0 0		0	0	1	0	0	0	0
K6-3	0	0	0	0	0	0	0	0	0	0	0	1	0 0	0	1	0	0	0	0	0	0
K6-5 K6-6	0	0	0	0	0	0	0	1	0	0	0	0			0	0	0	0	0	0	0
K6-7	0	0	0	0	0	0	0	1	0	0	0	0) 1	0	0	0	0	0	0	0	0
K6-8 K6-9	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
K6-10 K6-11	0	0	0	0	0	0	0	0	0	0	0	1 0	0 0		0	0	0	0	0	0	0
K6-12	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
K6-13 K5-2	0	0	0	0	0	0	1	0	0	0	0	0	0 0		1	0	0	0	0	0	0
K5-4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0
K5-5 K5-6	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0
K5-7 K5-8	0	0	0	0	0	0	1	0	0	0	0	0) 1	0	0	0	0	0	0	0	0
K5-9	0	0	0	0	0	0	0	1	0	0	0	1		0	0	0	0	0	0	0	0
K5-10 K5-11	0	0	0	0	0	0	1	0	0	0	1	0	0 0		0	0	0	0	0	0	0
K5-12	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
K3-1 K3-2	0	0	0	0	0	0	0	0	0	0	0	0	0 1		0	0	0	0	0	0	0
K3-4 K3-5	0	0	0	0	0	0	0	1	0	0	0	0		0	1	0	0	0	0	0	0
K3-6	0	0	0	0	0	0	1	0	0	0	1	0	0 0	0	0	0	0	0	0	0	0
K3-7 K3-8	0	0	0	0	0	0	0	1	0	0	0	0			0	0	0	0	0	0	0
K3-9	0	0	0	0	0	0	0	1	0	0	0	0) 1	0	0	0	0	0	0	0	0
K3-10 K3-11	0	0	0	0	0	0	0	1	0	0	0	0			1	0	0	0	0	0	0
C8-1	0	0	0	0	0	0	1	0	0	0	0	0	0 0	0	0	1	0	0	0	0	0
C8-2 C8-3	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0
C8-4 C8-5	0	0	0	0	0	0	0	0	1	0	0	0			0	1	0	0	0	0	0
C8-6	0	0	0	0	0	0	0	0	1	0	0	0	0 0	0	0	1	0	0	0	0	0
C8-7 C8-8	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
C8-9	0	0	0	0	0	0	1	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0
C8-10 C6-1	0	0	0	1	0	0	0	0	1	0	0	0			0	0	0	0	0	0	0
C6-2 C6-3	0	0	0	0	0	0	0	0	1	0	0	0			0	0	0	0	0	0	0
C6-4	0	0	0	1	0	0	0	0	0	0	0	0	0 0) 1	0	0	0	0	0	0	0
C6-5 C6-6	0	0	0	1	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
C6-7 C6-8	0	0	0	0	0	0	0	0	1	0	0	0 0			0	0	0	0	0	0	0
C6-9	0	0	0	0	0	0	0	0	1	0	0	0	0) 1	0	0	0	0	0	0	0
C6-10 S4-1	0	0	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0	0	0
S4-2	0	0	0	1	0	0	0	1	0	0	0	0	0 0	1	0	0	0	0	0	0	0
S4-3 S4-4	0	0	0	0	0	0	0	1	1	0	0	0			0	0	0	0	0	0	0
S4-5 S4-6	0	0	0	0	0	0	1	1	0	0	0	0			0	0	0	0	0	0	0
S4-7	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
S4-8 S4-9	0	0	0	0	0	0	0	1	0	1	0	0 0			0	0	0	0	0	0	0
S4-10 S1-1	0	0	0	0	0	1	0	1	0	0	0	1			0	0	0	0	0	0	0
S1-2	0	0	0	1	0	0	0	0	0	0	0	0	0 0) 1	0	0	0	0	0	0	0
S1-3 S1-4	0	0	0	0	0	0	1	0	0	0	0	0			0	0	0	0	0	0	0
S1-5	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
S1-6 S1-7	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
S1-8 S1-9	0	0	0	0	0	0	1	0	0	0	0	0			0	0	0	0	0	0	0
S1-10	0	0	0	0	0	0	0	0	1	0	0	0			0	0	0	0	0	0	0
S8-1 S8-2	0	0	0	0	0	0	0	0	1	0	0	0			0	0	0	0	0	0	0
S8-3	0	0	0	0	0	0	0	0	0	0	0	0 0			0	0	0	0	0	0	0
S8-4 S8-5	0	0	0	1	0	0	0	0	i	0	0	0	0	0	0	0	0	0	0	0	0
S8-6 S8-7	0	0	0	0	0	0	1	0	0	0	0	0	0 0		0	0	0	0	0	0	0
S8-8	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
S8-9 S8-10	0	0	0	1	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0
VA8-1	0	0	0	0	0	0	0	0	0	0	1	0	0 0	0	0	0	0	0	0	1	0
VA8-2 VA8-3	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0
VA8-4 VA8-5	0	0	0	0	0	0	1	0	0	0	0	0	0 0		0	0	0	0	0	0	0
VA8-6	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
VA8-7 VA8-8	0	0	0	0	0	0	0	0	0	0	0	0	0 0		0	0	0	0	0	0	0
VA8-9	0	0	0	1	0	0	0	0	1	0	0	0	0 0	0	0	0	0	0	0	0	0
VA8-10	0	0	0	1	0	0	1	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0

(resolving power, Rp) 等遺傳歧異度參數。其 中, He 代表族群中異質結合個體的機率,計 算公式為 $1-\sum Pi^2$; PIC 係分析等位基因在每 個基因座內產生多型性之機率,其公式為 $PIC = 1 - \sum Pi^2 - \sum Pi^2 Pj^2$, Pi 和 Pj 分別是第i個和第i個等位基因在所有種原中出現的頻 率; EMR 為所蒐集的種原中,每次試驗分析 的多型性基因座數量,其公式為 $E = n\beta$, $\beta =$ $n_p/(n_p + n_{np})$, n_p 與 n_{np} 分別係多型性與非多 型性片段的數量;多型性分子標誌的平均異 質性之公式 Havp=∑ Hen/ np; MI 為不同分子 標誌的效率,是 EMR 和 Havp 的乘積; D 為 隨機選取兩個體間表現不同片段的機率,用 以區分個體間差異。Rp 為評估分子標誌區別 能力,其公式為 $Rp = \sum I_b$, I_b 為每個片段上 多型性資訊。

接著用 NTSYS pc ver 2.2 軟體繪製親緣 樹圖與主座標分析 (Principal Coordinate Analysis, PCoA),透過SimQual 模組計算Dice 相似性係,並將其相似性係之結果以 SAHN 模組進行群集分析,同時使用不加權算術平 均值 (Unweighted Pair Group Method with Arithmetic Mean, UPGMA) 繪製相似性樹形 圖 (dendrogram);進主座標分析時,以 Decnter 與 Eigene 模組繪製二維圖,釐清種 原間相對遠近關係。如果樣品距離越接近, 表示物種組成結構越相似,因此群落結構相 似度高的樣品會聚集在一起,反之則分開。

結果與討論

根據王等 (2006) 研究選取之 TUMXLv 7.56 基因座,其等位基因數 22, He 為 0.885, PIC 為 0.868 的,而本研究得到之等位基因數 結果亦同為 22。Aguirre et al. (2017) 認為等位基因數目與種原的起源地或種原遺傳有關,包括遺傳多樣性或地理分布距離,本研究之白蝦種原蒐集自世界各地,因地理分布較廣泛而保有其遺傳多樣性。

經由 iMEC 網站分析得到遺傳歧異度參數 (表 3),本試驗所得到之共顯性分子標誌 He 為 0.162、PIC 為 0.149。He 為群體變異程度的最適參數,數值愈高顯示其基因座的等 位 基 因 較 具 有 異 質 結 合 個 體 (heterozygote) 之可能性,亦即表明該群體的遺傳變異大,遺傳多樣性豐富;PIC 則是表示微衛星座位變異程度的一個指標,當 PIC > 0.5 時,表示微衛星座位變異程度為高度多態性位點;當 0.25 < PIC < 0.5 時,為中度多態性位點;當 PIC < 0.25 時,為中度多態性位點;當 PIC < 0.25 時,為此度多態性位點(Vanhala et al., 1998),因此,此次試驗所選的基因座並不適合用來分析,未來將再尋找其他基因座。

依據 UPGMA 進行群集分析所繪製之樹

表 3 白蝦種原之分子標誌序列與多型性分析結果

In	dex	Не	PIC	EMR	Havp	MI	D	Rp
Va	alue	0.162307	0.149136	1.96	7.38E-05	0.000145	0.9921	3.92

He = expected heterozygosity; PIC = polymorphic information content; EMR = effective multiplex ratio; Havp = mean heterozygosity; MI = marker index; D = discriminating power; R = resolving power

狀圖如圖 1 所示, 在相似度 0.84 處分成為 I、II 和 III 三群, 第 I 群包含 32 個, 第 II 群包含 66 個, 第 III 群包含 2 個。針對 10 個引進群體的遺傳距離分析結果,不同年度引進的 Kona Bay 群體親緣關係最近, 因個體差異問題, 少部分與 SIS 和 VA8 族群相近; 而 CP 與 SIS 群體親緣關係相近, 少部分與 VA8 族群相近, 由本試驗結果推測 VA8 族群是由 Kona Bay、CP 與 SIS 三者間所選育的,兼具

以上三者間基因型的特性,因此未來可藉由 遺傳距離結果來作為後續雜交親本選擇之依 據,選擇親緣較遠的族群進行雜交,以創造 更多的遺傳多樣性;另由主座標分析,將種 原間的親緣關係以二維方式呈現(圖 2),群 集分析結果顯示種原間相似度高,推測係因 蒐集品種的來源較為有限,且可能長時間以 相同育種目標進行選拔淘汰,因此,導致種 原間幾乎純合。

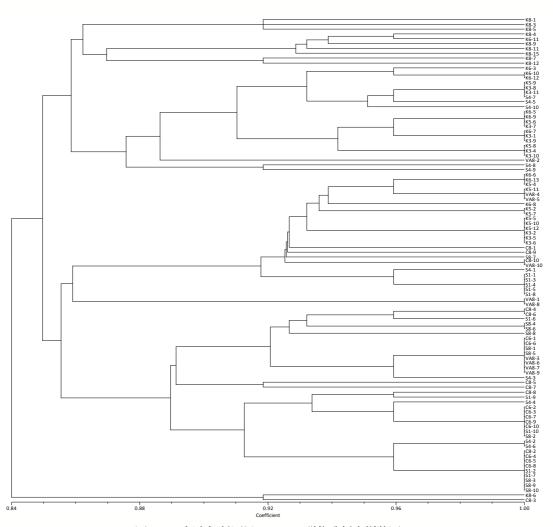


圖 1 10 個白蝦種原以 UPGMA 群集分析之樹狀圖

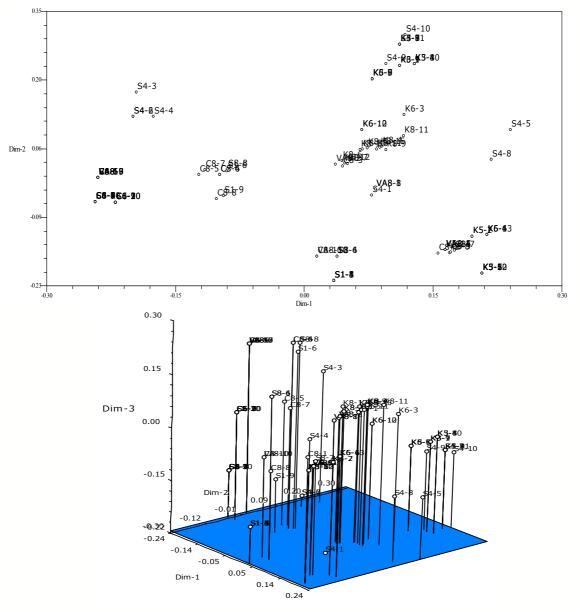


圖 2 10 個白蝦種原隨機取樣各 10 隻之主座標分析

結語

微衛星分子標誌所產生的等位基因數與 欲分析的材料來源與其遺傳種質如遺傳多樣 性或地理距離相關,可作為基因型分類的依 據之一。未來將利用微衛星基因座來找出與 性狀相關的分子標誌,進而作為生物性狀調查工具,藉以檢驗基因型的差異,改善育種速度,並減低基因窄化的現象,提供育種人員進行種原管理,並作為親本選拔之參考依據。