海鱺對礦物鹽之需求及利用研究

何碧月、周瑞良、鄭世榮、陳紫媖 生物技術組

魚類可快速由水中吸收鈣,但是水中磷含量較低,而且魚類對水中磷之吸收率也較差,因此無法由水中獲得所需要的磷。另一方面就減少污染而言,更需要瞭解魚類對鈣、磷之需求量以及鈣對磷吸收之影響,以避免過量添加或是由於魚類無法吸收而排入水中造成環境的污染。本研究即探討海鱺對鈣、磷之需求、對魚粉中磷之利用率以及不同含量的鈣對磷消化率之影響,期能建立海鱺對此兩種礦物鹽之資料,以做為人工配合飼料添加鈣、磷時之參考。

經由 8 週飼育試驗結果得知,海鱺之增重率以不添加鈣和磷之飼育組最差,飼料效率也較差,添加 0.5 和 1%的鈣對增重率及飼料效率 (FCR) 無顯差異 (表 1),顯然海鱺對鈣的需求與有些魚種不同,因為魚類可由水中攝取鈣,多數魚種並不仰賴飼料中的鈣,但本試驗中不添加鈣則造成海鱺成長較慢,可能是海鱺成長快速,或是其對水中吸收鈣之機制與其他魚種不同,尚待研究。飼

料中添加 0.6%的磷時,海鱺增重率最好,不添加磷則增重率較差。飼料效率則以不添加磷的處理組最差,而添加 0.3 及 0.6%時並無顯著差異。

在消化率的試驗中,飼料中不添加磷時,鈣的添加量不影響海鱺對魚粉中磷的消化率。當飼料中磷的添加量為 0.3 及 0.6%時,海鱺投餵添加 0 及 0.5%鈣之飼料,其對磷之消化率顯著低於添加 1%鈣之處理組(表 2),因此添加 1%的鈣顯然能提高磷的吸收率,這也是和多數魚種不同之處,由本試驗亦得知海鱺對魚粉中磷的消化率約為64%。

以氯化鈣為鈣源時,海鱺對鈣的需求量為 0.5-1%,以磷酸二氫鈉為磷源時,海鱺對磷之需求量不低於 0.6%。因此,由本試驗之結果可知魚粉中的鈣與磷無法滿足海鱺幼魚成長所需,必須再添加磷酸鹽類及鈣於飼料中。

表 1	Weight gain a	nd feed o	conversion	ratio (FCR)	of cobia	fed	different d	iets

Calcium (%)	Phosphorus (%)					
	0	0.3	0.6			
Weight gain (%)						
0	229.09±9.91 by*2	235.41±22.12 by	286.89±14.25 bx			
0.5	$208.98\pm9.96^{\text{by}}$	318.64±16.52 ax	303.65±5.93 ^{a bx}			
1.0	265.54 ± 20.68^{ay}	287.74±2.45 ay	325.51 ± 11.16^{ax}			
FCR						
0	1.64 ± 0.05^{bx}	1.68±0.12 ax	$1.42\pm0.05^{\text{ ay}}$			
0.5	1.81 ± 0.08^{ax}	$1.34\pm0.06^{\text{ by}}$	1.38±0.03 ay			
1.0	1.51 ± 0.09^{bx}	1.45±0.03 bx	$1.31\pm0.02^{\text{by}}$			

^{*1} Initial body weight (100 g)

^{*2} Different superscript abc indicate significant different (p < 0.05) between calcium with in phosphorus; xy indicate significant different between phosphorus within calcium.

表 2 Phosphorus digestibility of cobia fed different diets

Phosphorus (%) Calcium (%)	0	0.3	0.6
0	62.69±4.88 ax*	57.72±8.55 bx	64.36±5.94 bx
0.5	60.79 ± 2.96^{ax}	67.38 ± 1.92^{abx}	63.24±5.54 bx
1.0	69.23±4.19 ax	72.09 ± 6.12^{ax}	74.50±1.92 ax

 $^{^*}$ Different superscript abc indicate significant different (p < 0.05) between calcium with in phosphorus; xy indicate significant different between phosphorus within calcium.