牡蠣殼作為生物可分解複材之研究

王庭玫、高堂穎、蔡慧君 水產加工組

根據農委會廢棄物統計資料顯示,自 2010 - 2021 年,臺灣每年平均產生 14.8 萬公噸的廢棄牡蠣殼。而根據聯合國環境署 2018 年資料顯示,人類每年製造 90 億噸塑膠,但僅 9% 有被回收,大部分的塑膠最後進了垃圾場、掩埋場或散落周遭環境中,因無法分解的特性,造成環境或水域的污染,因此若將水產大宗的剩餘資材-牡蠣殼用於開發生物可分解材料,不僅可減少塑料使用,亦能加值應用牡蠣殼以落實農業剩餘資材循環利用,並跨域研究形成生物可分解材料應用新產業。

本研究將牡蠣殼以不同處理條件製備 Sample A 與 Sample C,再以 10、20、30% 添 加量分別與 PBS、PBAT、PBSA 複材進行混 煉,並測試其熔融指數 (melt flow index, MI 值)、機械性質及熱重分析 (thermogravimetric analysis, TGA),以建立生物可分解複材之最適 加工條件。結果顯示, 牡蠣殼粉 Sample A 分 別與 PBS、PBAT、PBSA 混煉後,其 MI 值皆 比添加 Sample C 的組別高,顯示其加工流動 性較佳,為較適合加工的牡蠣殼粉原料(表 1);在機械性質分析中,添加牡蠣殼粉之複合 材料,其機械強度(拉伸強度、延伸率)皆呈 現下降趨勢。其中 Sample C 的主要成分為氧 化鈣 (CaO),其極性氧與 PBS 之間的作用力較 強,所以當添加 Sample C 時,拉伸強度與延 伸率下降程度較 Sample A 少 (表 1);從熱重分 析顯示,添加牡犡殼粉與 PBS、PBAT、PBSA 混煉後,能降低複材的熱重損失,皆可提升材 料之熱穩定性(圖1)。

綜合上述結果,使用添加量為 20% 的 Sample A 牡蠣殼粉分別於 140℃下與 PBS 混煉之複材、於 180℃下與 PBAT 混煉之複材、於 140℃下與 PBSA 混煉之複材具有較適之加工流動性與機械性質,為較適合做為後端產品

之加工條件,而以 20% 的牡蠣殼取代量計算,與純 PBS 類 (每公斤約 230-460 元)之材料價格相比,每公斤複材將能省下約 19.6-19.8%的材料成本。

表 1 牡蠣殼粉與 PBS、PBAT、PBSA 混煉後之 MI 值與 機械性質分析

樣本	牡蠣殼 含量(%)	MI (g/10min)	Stress (MPa)	Elongation (%)
PBS	0	7.8±0.1	34.2 ± 0.7	121.5±99.5
PBS/A	10	12.4±1.5	31.2±2.2	13.9±0.1
	20	49.6±3.8	28.2±3.4	8.3±0.7
	30	58.8±3.7	19.8±1.1	4.0±0.3
PBS/C	10	4.3±0.1	31.6±0.5	16.7±1.4
	20	4.8±0.6	31.6±3.1	12.6±3.9
	30	8.7±1.8	25.8±1.0	7.0±0.7
PBAT	0	19.1±0.8	21.0±1.0	1011.2±92.9
PBAT/A	10	17.4±0.7	7.5±0.4	96.1±21.5
	20	43.9±1.8	9.3±0.7	25.7±2.8
	30	64.6±1.1	10.0±0.6	14.3±2.4
PBAT/C	10	8.4±1.0	10.8±1.3	366.2±70.0
	20	9.8±0.7	9.4 ± 0.4	30.4±7.2
	30	13.5±0.5	11.0±0.6	11.3±1.6
PBSA	0	208.0±4.9	9.2±0.1	6.8±0.2
PBSA/A	10	173.2±5.4	6.5 ± 0.4	3.9±0.5
	20	175.2±6.9	7.7±1.5	3.3±0.5
	30	204.4±3.7	7.9 ± 0.7	2.7±0.3
PBSA/C	10	129.2±4.6	8.3±0.6	4.5±0.4
	20	95.6±4.4	11.9±1.8	5.4±1.1
	30	87.6±0.5	16.0±1.7	5.8±0.8

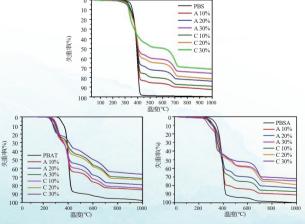


圖 1 牡蠣殼粉/PBS、牡蠣殼粉/PBAT、牡蠣殼粉/PBSA 複材之熱重分析曲線